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ANALYSIS OF FUNCTIONALLY GRADED SHELLS SUBJECTED TO 
BLAST LOADS 

 
Abstract  
The response of doubly curved functionally graded panels exposed to blast loads and a uni-
form through the wall-thickness temperature field is investigated.  Two scenarios, symmetric 
and antisymmetric about the midsurface, continuous distributions of the two constituent 
phases, ceramic and metal, are considered, in the sense that in one of them the composition 
varies gradually from ceramic-to-metal-to-ceramic, while in the other, from ceramic-to-
metal.  The implications of pressure pulses, volume fraction exponent, panel curvature, and 
the temperature change on the time-history of the transverse deflection are presented, and 
pertinent conclusions are drawn. 
 
1 Introduction 

During the last few decades there has been a sustained effort in fabricating aerospace and 
reusable flight vehicles from advanced laminated composites.  However, due to their well-
known shortcomings of delamination failure, and chemically unstable matrix and lamina ad-
hesives, especially at high temperatures, new structural paradigms, enabling one to overcome 
these adverse effects, are needed.  Advances in functionally graded materials (FGMs) [1], 
that combine desirable properties of metals and ceramics, and their applications in aerospace 
structures, see e.g. [2-6] are being viewed as an alternative solution for aerospace structures 
exposed to severe thermomechanical environments. In this report, the transient response of 
shallow doubly curved shells made of FGMs to time-dependent loads induced by an explo-
sion, a sonic-boom or a shock wave is studied. 

 
2 Phase distribution and homogenization of material properties 

Points of the shell mid-surface are referred to the Gaussian coordinates xα, and the thickness 
coordinate, positive in the downward direction is denoted by x3.   

 
Based on the rule of mixtures, the effective material property at a point is given by  
 
 metal3metalceramic3 ),()()( PkxVPPxP +−=  (1) 

where P(x3) denotes a generic property of the material at a point of the shell, Pceramic and Pmetal 
are values of the property for the two phases, ceramic and metal, while V(x3, k) represents the 
volume fraction of the ceramic.   

The following two scenarios of grading of the ceramic and the metal through the wall thick-
ness are considered:  

a) In the case of a high temperature field at both the top the bottom faces of the shell, 
the phases should vary symmetrically through the wall thickness, in the sense of hav-
ing 100% ceramic at the outer surfaces of the shell, and tending toward 100% metal 
at its mid-surface, and 



 

 

b) In the case of a high temperature at the top surface x3 = -h/2 only, the phases should 
vary non-symmetrically through the wall thickness.  In this case, there is 100% ce-
ramic at the bounding surface x3 = -h/2 of the shell, and 100% metal at the surface x3 
= h/2.  Here h equals the shell thickness. 

Whereas in scenario (a) there is no bending-stretching coupling in the constitutive equa-
tions, in scenario (b) such a coupling exits.   

For scenario (a), the ceramic volume fraction V(x3, k) is given by  
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where the signum function is given by sgn (0) = 0, -1 for x3 < 0, and +1 for 03 >x ; and k, 
termed the volume fraction index, provides the material variation profile through the wall 
thickness, ( )∞≤≤ k0 . Thus, at x3 = ± h/2, V = 1, P( ± h/2)⇒ Pc for every value of k, and for 
x3 =0, V = 0 and P (0) ⇒ Pm. 

For scenario (b), the composition varies from ceramic to metal, and the variation of V 
through the wall thickness is represented by  

 ( )[ ]khxhkxV 22),( 33 −=  (3) 

Thus, at 3 / 2, ( / 2) mx h P h P= ⇒  and for 3 / 2x h= − , ( / 2) cP h P− ⇒ .  At the midsurface, 

3 0x = , and for 1k = , ( )(0) / 2c mP P P= + . 
 
3 Kinematics and Constitutive Equations 

We use the first-order shear deformation theory (FSDT).  Accordingly the distribution of 3-D 
displacements U  through the wall thickness is postulated as [3]: 
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In Eqs. (4a-c) Ui is the displacement component along the xi direction; u0, v0 and w0 are dis-
placements of a point on shell’s mid-surface, 1 2and ψ ψ  are rotations about axes x2  and x1, 
respectively, and t is the time variable. 

Based on Eqs. (4a-c), the strain field is expressed as  

 { } { } { }κεε 3
0 x+=  (5) 

where 
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( )ij i jγ ≠  denote engineering shear strains, a comma followed by index j denotes partial de-
rivative with respect to xj, α̂  is the coefficient of thermal expansion, R1 and R2 denote the ra-
dii of curvature, and ΔT equals the uniform temperature change from that in the unstressed 
reference configuration. 

Using equations relating the 2-D stress-resultants {N} and stress-moments {M} to stresses, 
and assuming that for a shallow shell, h/Ri << 1, one gets the following expressions: 
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and sk  is the shear correction factor.  The superscript T on a quantity denotes its value for the 
thermal field.  Matrices [ ] [ ] [ ] [ ], ,  and sA A B D  are the stretching, the transverse shear, the 
bending-stretching coupling, and the bending stiffness matrices, respectively. For an FGM, E 
= E (x3), v = v (x3) and α = α (x3), where E, v and α are, respectively, Young’s modulus, 
Poisson’s ratio, and the coefficient of thermal expansion.  For an orthotropic material, there 
are nine elastic constants, and three coefficients of thermal expansion. 

These constitutive equations are valid for the general distribution of constituent phases across 
the wall thickness.  For the symmetric distribution of constituent phases, the bending-
stretching coupling vanishes, and [B] = 0. 

4 Governing Equations 

We use Hamilton’s principle  

 ( )
1

0

ˆ 0
t

t

J U W T dtδ δ= − − =∫  (8) 



 

 

where t0 and t1 are two arbitrary instants of time, ˆ ,  U W  and T denote the strain energy, the 
work done by surface tractions, edge loads and body forces, and the kinetic energy, respec-
tively, while δ is the variation operator.  Equations (5) through (8) yield a system of tenth or-
der partially differential equations, which can be expressed in a compact form as  

 ( )5,1, == jipvL ijij   

Here jiij LL =  are the 2-D differential operators whose expressions are omitted,  pi (t) is the 

thermomechanical load vector, and { }Tj wvuv 21000 ,,,, ψψ= is the generalized displacement 
vector. 

4 Thermal Blast Loads  

A thermal blast load is assumed to be generated by laser heating, and the corresponding tem-
perature rise T is given by 
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where 
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mI  is the laser intensity, R  the distance of the laser from the shell surface near the laser, and 

cκ  the thermal conductivity, ρ  the mass density and c  the specific heat of the shell material. 

For preliminary results presented here, the temperature rise TΔ  measured from a reference 
temperature in the stress-free configuration is considered to be time and space independent. 

Consistent with the Navier solution to be adopted in the solution of the initial-boundary-value 
problem, we represent TΔ  as 
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For the thermal stress-resultants NT and stress couples MT associated with the FGM, one can 
use the same representation as for ΔT, that is  
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Using definitions of NT and MT, and assuming the homogenized material to be isotropic, one 
gets the following expressions for their amplitudes:  
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For the distribution of volume fractions of constituents given by scenario (a), Eq. (12) simpli-
fies to  
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and for scenario (b) to 
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where ˆ ˆ ˆ,cm c m cm c mE E E α α α= − = − , coefficients and S a

ij ijI I  are geometric quantities asso-
ciated,  respectively, with the symmetrically and the asymmetrically distributed volume frac-
tions of the constituents. 
 
5.  Mechanical Blast Loads 
 
A mechanical blast load can be generated by an explosion or by a shock-wave disturbance 
produced by an aircraft flying at a supersonic speed, or by a supersonic projectile, rocket or 
missile operating in its vicinity.  In the latter case, the blast pulse is referred to as sonic-boom.  
Its time-history is described as an N-shape pulse, featuring both a positive and a negative 



 

 

phase.  Since panels considered here have small dimensions, it is reasonable to assume that 
the pressure is uniform over the entire panel, and that the panel is impacted at normal inci-
dence. 
 
The sonic-boom overpressure can be expressed as  
 

 0
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where P0 denotes the peak reflected pressure in excess of the ambient one, tp denotes the posi-
tive phase duration of the pulse measured from the time of impact of the structure, and r̂  de-
notes the shock pulse length factor. 
 
For ˆ 1r = , the sonic-boom degenerates into a triangular explosive pulse; for ˆ 2r = , a symme-
tric sonic-boom pulse is obtained, and ˆ 2r ≠  corresponds to an asymmetric N-pulse.  When 
ˆ 1r =  and pt → ∞  in Eq. (14), the N-pulse degenerates into a step pulse.  Equation (14) can be 

written in the following equivalent form  

 3 0 ˆ( ) 1 ( ) ( ) ,p
p

tp t P H t H t rt
t
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where H(t) denotes the Heaviside step function. 
 
As a special case of Eq. (15), the rectangular and the step pressure pulses can be obtained.  In 
the former case 
 { }3 0( ) ( ) ( ) ,pp t P H t H t t= − −  (16a) 
 
while for the latter one 
 3 0( )  for 0.p t P t= >  (16b) 
 
A more realistic expression of the explosive blast pulse as compared to the triangular one is 
described by the following Friedländer exponential decay equation: 
 

 /
3 0( ) 1 ,pa t t

p

tp t P e
t

′−⎛ ⎞
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⎝ ⎠
 (17) 

 
where negative phase of the blast is included.  In Eq. (17) a′ denotes a decay parameter which 
is found from the pressure time history measured in the blast test.  The triangular explosive 
load can be viewed as a limiting case of Eq. (17), that is, for / 0pa t′ → . 
 
 
The sinusoidal pulse  
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will also be considered in numerical simulations.   
 
For an air-blast traveling tangential to the panel, the pressure-time history is represented as 
 
 1( )

3 0 1( ) ( ),ct xp t P e H ct xη− −= −  (19) 
 
where c is the wave speed in the medium surrounding the structure, and η is an exponent de-
termining the character of the blast decay. 
 
6 Solution techniques  
 
We consider a panel with simply supported edges and term the boundary conditions as SS1.  
That is, on  x1 = 0, L1: v0 = 0; w0 = 0; ψ2 = 0; N11 = M11 = 0 and on x2 = 0, L2: u0 = 0; w0 =0; 
ψ1 = 0; N22 = M22 = 0.  The SS1-type boundary conditions imply that edges can move freely 
in the tangential direction. 
 
The boundary conditions corresponding to simply supported edges are identically fulfilled by 
expressing the displacements as  
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Consistent with the Navier-type representations (20), we express the load as 

 p3 (t) = 1 2
, 1
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where p3 (t) corresponds to the particular case of blast loading.   
 



 

 

A generalized displacement V%  is represented as the sum of two parts, a quasi-static and a 
dynamic.  Thus  
 1 2 1 2 1 2( , , ) ( , ) ( , , ).S dV x x t V x x V x x t= +% % %  (22) 
 
Displacements SV%  are determined from the governing equations with zero inertia and zero 
transverse loads.  Displacements dV%  are determined from the governing equations by keeping 
the inertia and the transverse dynamic load terms, and discarding thermal terms in the boun-
dary conditions. 
 
7 Numerical Results 
7.1 Verification of the Algorithm 
In order to verify the computer code, we study vibrations of a plate comprised of a FG ma-
terial having ZrO2 and Al as constituents; their material properties are listed in Table 1. We 
assign very large values to R1 and R2 so that the shell like structure can be approximated as a 
plate.  The presently computed frequencies of free vibrations for two values of L1/h and three 
values of the shear correction factor are compared with the analytical results of Vel and Batra 
[7] in Table 2.  It is clear that the presently computed frequencies for different modes of vi-
bration are close to the analytical values.  Henceforth, we set the shear correction factor equal 
to 2 /12π .  

 
Table 1. Material Properties 

 Modulus(GPa) Poisson’s Ratio Density(kg/m3) 
ZrO2 200 0.3 5700 
Al 70 0.3 2702 

 
 
Table 2. Natural Frequencies of a Thick Functionally Graded Shear Deformable 

Plate, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

m

m

Eh
L ρ

ωϖ
2
1  

Volume frac-
tion index, 

(k=1) 

Shear 
correction 
factor (ks) 

L1/h=4 L1/h=10 

m,n=(1,1) m,n=(2,2) m,n=(5,3) m,n=(1,1) 

Present 
2/3 5.3884 15.774 38.624 6.1923 
5/6 5.5512 16.852 42.516 6.2305 
π2/12 5.5423 16.789 42.281 6.2285 

Vel and Batra 
l[1] 

Combined 5.2389 15.772 40.730 5.9980 
MTm 5.1984 15.611 40.206 5.9609 
SC 5.2405 15.773 40.717 6.0004 

MTc 5.2888 15.937 41.158 6.0502 
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7.2 Results and Discussion 
The panel material is a combination of aluminum and ceramic.  Values assigned to different 
material and geometric parameters used in the computation of results are listed in Table 3. 
 
 Table 3.  Material Properties 

 Metal 
(Aluminum) 

Ceramic 
(Alumina) 

E, Modulus (GPa) 70 393 
υ, Poisson’s Ratio 0.3 0.25 
ρ, Density (Kg/m3) 2707 3970 

α, Coeff. of Thermal Exp. (/ °C) 23 × 10-6 8.8 × 10-6 
Cv, Specific Heat (J/Kg-°K) 900 268 
kT, Thermal Cond. (W/m-K) 204 10.4 
κ, Thermal Diffusivity (m2/s) 8.373 × 10-5 9.783 × 10-6

(L1 = L2 = 0.2m, h = 0.004m) 
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Figure 1:  Time histories of the deflection of the shell centroid for three values of the volume 
fraction index k. 

During the computation of results presented below, the temperature is taken to be uniform 
through the shell thickness and its value is known a priori.  Thus the temperature variation on-
ly affects the initial deflection of the shell.   

 

 



 

 

7.2.1 Effect of pressure pulse 

Figure 1 depicts time histories of the deflection of the shell centroid for three values of the 
volume fraction index k.  The value   k = 0 corresponds to a homogeneous material (zirconia).  
The mechanical shock load is approximated by a rectangular pulse of amplitude 1.5 MPa and 
time duration 2 ms.  During the time the shock pressure acts on the shell, the centroidal def-
lection for the FG material with k = 2 is the highest of the three cases considered.  However, 
for t > 2 ms when there is no external pressure acting on the shell, the amplitude of the cen-
troidal deflection for the shell made of the homogeneous material is the largest.  In each case, 
the amplitude of vibrations stays constant in time since there is no dissipative mechanism in-
troduced in the problem.  We note that the time period of vibrations and hence the frequency 
depends upon the variation through the thickness of volume fractions of the two constituents. 
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Figure 2:  Time histories of the deflection of the shell centroid for four values of the volume 
fraction index k. 

We have plotted in Fig. 2 time histories of the deflection of the shell centroid for a pressure 
pulse of constant amplitude of 1.5 MPa and for the FG materials for which results are depicted 
in Fig. 1.  The amplitude of the centroidal deflection for the alumina shell is the highest, fol-
lowed by that of the shell made of the FG material with k = 2.  Because the pressure applied to 
the shell is uniform both in space and time, and there is no dissipative mechanism in the  
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Figure 3:  Time histories of the deflection of (a) the plate, and (b) the shell centroid for sym-
metric and asymmetric distribution about the midsurface of the two constituents. 
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Figure 4:  Time histories of the deflection of the shell centroid for symmetric distribution 
about the midsurface of the two constituents; (a) ΔT = 200 oC, and (b) ΔT = 750 oC. 
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problem, it continues to vibrate about the deformed shape under a statically applied pressure 
of 1.5 MPa.  The maximum deflection of the zirconium shell is 2.2 times that of the aluminum 
shell even though Young’s modulus of zirconium is 5.6 times that of aluminum.  Thus inertia 
forces significantly affect the peak deflection of the shell centroid.  We note that the frequen-
cy of vibration of a zirconium shell is nearly twice that of the corresponding shell made of 
aluminum.      

7.2.2 Effect of Curvature 

 For ΔT = 1500 oC, and an exponentially decaying pressure pulse of peak amplitude 5 MPa 
and time duration 5 ms, Figure 3a,b exhibits time histories of the centroidal deflection for a 
plate and a shell with constituents distributed symmetrically and asymmetrically about the 
mid-surface of the shell and the same size plate.  We note that the asymmetric distribution of 
constituents results in slightly lower peak deflection as compared to that for the symmetric 
distribution of the two phases.  For the same through-the-thickness distribution of the two 
phases, the peak initial deflection of the shell with L1/R1 = L2/R2 = 0.2 is about one-third of 
that of the plate with L1/R1 = L2/R2 = 0.  

7.2.3 Effect of Initial Temperature 

In Figure 4a,b we have plotted time histories of the centroidal deflection of the FG shell with 
L1/R1 = L2/R2 = 0.2 and for initial temperatures of 200 oC and 750 oC for the symmetric dis-
tribution of the material about shell’s midsurface; the corresponding results for ΔT = 1500 oC  
are given in Figure 3b.  Except for changing the initial deflection of shell’s midsurface, results 
are both qualitatively and quantitatively the same as is to be expected because of the linear 
theory employed here. 

8.  Conclusions 

We have studied transient deformations of a doubly curved shell made of a functionally 
graded material with zirconium oxide and aluminum as the two constituents, and one of the 
major surfaces of the shell subjected to a mechanical shock load.  Three different representa-
tions of the blast load are considered; however, the temperature rise is assumed to be uniform 
throughout the shell and is known a priori.  It is found that volume fractions of the two consti-
tuents can be suitably tailored to adjust the amplitude of vibrations.  Also, for the same distri-
bution of volume fractions of the two constituents, the amplitude of vibrations of the shell is 
considerably less than that of the corresponding plate. 
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